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1 Objectives 

The objective of our effort was 

• to develop mathematical algorithms and corresponding efficient nu- 
iiMmal simulation tools for modeling propagation of acoustic waves 
through the human head, 

and, subsequently, 

• to apply these tools to simulate energy transfer to the inner ear, and 
to assess the noise induced damage to the human hearing system, 

2 Overview of the approach 

11 is a well established fact that integral-equation formulations provide the 
most accurate solutions to wave problems. They require, however, solv- 
ing dense systems of linear equations. Traditional methods of solving such 
systems (e.g., through matrix inversion) are characterized by the computa- 
tional complexity and memory requirements of the order of N3. Here N 
is the number of unknowns, or a number of volume elements, necessary to 
resolve acoustic wave variations as well as geometrical details of the ob- 
ject. For complex, anatomically realistic models, N can easily become of 
the order of tens of millions. Hence, despite their reliability and accuracy, 
the conventional integral-equation based methods become computationally 
prohibitively intensive to provide solutions for realistic problems of interest. 

During the last fifteen years a significant progress has been made in the 
development of fast frequency- and time-domain integral-equation solvers 
and, as a result, the ability of accurate and fast numerical simulations 
of wave propagation and scattering in complex media has dramatically 
improved. Matrix compression techniques, such as the Adaptive Integral 
Method (AIM)[1, 2], the Fast Multiple Method (FMM)[3j, the pre-corrected 
FFT method[4], the sparse-matrix canonical grid method (SMCG)[5], have 
been developed. They allow solving large linear sets of equations with dense 
matrices utilizing storage and execution times characteristic of problems in- 
volving sparse linear systems. The physical idea behind such methods is that 
evaluation of interactions at large distances requires less resolution than at 
small distances. Consequently, the computational complexity and memory 
requirements of the compression methods scale approximately linearly with 
the number of unknowns N. 



The underlying element of our approach is the Fast Fourier Transform 
(FFT) based AIM matrix compression method, initially developed in the 
context of electromagnetics for solving large-scale problems, and described 
in detail in Ref [2]. Adaptation of this formulation to large-scale acoustic 
problems was the initial step of our effort. 

The main reason for choosing the FFT-based compression method rather 
than other compression techniques is that it provides superior efficiency in 
the treatment of both volumetric problems and sub-wavelength (tetrahe- 
dron size much smaller than the wavelength) discretizations. We note that 
sub-wavelength geometry regions constitute dominant portion of the head 
geometry model. 

The final goal envisioned by us when undertaking this approach was 

• to develop an efficient simulation tool capable to solve large-scale prob- 
lems without compromising accuracy of the solution (due to the use 
of an integral equation based solver with non-lossy impedance matrix 
compression), 

• to develop capability to work with geometries characterized by realist i< 
geometrical details and material proper: 

and thus to provide a numerical tool for modeling multiple physical mech- 
anisms of acoustic energy transfer to the human ear and of assessing the 
noise induced damage. 

3    Summary of the results 

Our work comprised the following main efforts: 

• development of fast integral equation based solver for acoustic wave 
propagation through inhomogeneous media, 

• development of fast volumetric integral equation formulation for solv- 
ing high-contrast acoustic problems (e.g., biological tissues embedded 
in air). 

• a parallel, distributed memory implementation of the fast acoustic 
integral equation based solver, 

• extension of the developed approach to elasticity. 



The results of our work have been presented in two articles published in 
the Journal of Acoustical Society of America [8, 7]. Two additional papers, 
Acousto-elastic integral equation based numerical simulation tools for anal- 
ysis of sound wave interactions with human hearing system and design of 
high-noise protection devices and A parallel distributed-memory implemen- 
tation of a fast acoustic integral-equation solver are in the process of being 
submitted for publication. 

The Sections below give the brief summary of the work performed. 

3.1    Fast volumetric integral solver for acoustic wave propa- 
gation through inhomogeneous media 

We adaptated the Fast Fourier Transform (FFT) based AIM matrix com- 
pression method,[l, 2] initially developed in the context of electromagnetics, 
to solving large-scale volumetric integral equations problems in acoustics. 

In the AIM approach the original basis functions are expanded into sets 
of auxiliary, far-field equivalent, point sources located on nodes of a regular 
Cartesian grid. As the result, the far-field part of the interaction matrix 
becomes a Toeplitz matrix (or, more precisely, a product of a Toeplitz and 
sparse transformation matrices). The Toeplitz property allows computation 
of the matrix-vector product by means of FFTs with the NlogN solution 
complexity. The near-field part of the interaction matrix is, by construction, 
sparse. Hence, its contribution to the solution complexity is of the order of 
O(N). 

In comparison to other methods, we find the AIM fast solution scheme 
particularly suitable for solving acoustics problems. Its main advantage is 
that it can be applied to a wide frequency range - from tens of Hz to tens 
of kHz - with only a minor modification of the matrix compression scheme 
from the low- to high-frequency mode. (In the FMM approach, on the 
other hand, entirely different algorithms have to be used for low and high 
frequencies. The pre-corrected FFT method is less efficient than AIM at 
higher frequencies. Finally, for the considered applications, the cost of the 
SMCG method is significantly higher due to the necessity of computing a 
number of derivatives of the Green function.) 

The developed algorithm makes possible simulations involving realistic 
geometries described in terms of a few million unknowns, characterized by 
highly sub-wavelength details, and large density contrasts. 

Results of our work are presented in detail in [8]. Examples involving 
calculations of acoustic field distribution in a human head described in terms 
of approximately a million unknowns are also shown there. 



3.2 Two-stage acoustic integral-equation solver 

Conventional Lippmann-Schwinger integral equations, when applied to high- 
contrast problems (e.g. problems involving acoustically dense objects (bi- 
ological tissues) immersed in a low-density medium (air)), may potentially 
become ill-conditioned. 

An important feature of such high-contrast problems is the fact that 
most of the incident wave energy is reflected from interfaces between the 
low- and the high-density media, due to a large impedance mismatch be- 
tween the materials. This circumstance does not cause computational prob- 
lems in solving purely scattering problems, when these are formulated in 
terms of the boundary-element method, i.e., as surface integral equations 
involving boundary conditions on the surface of the scatterer. Difficulties, 
however, arise if one attempts to determine pressure distribution within 
an inhomogeneous body by means of the volumetric integral equations (the 
Lippmann-Schwinger equations). In this case, the fact that only a small 
fraction of the incident energy penetrates inside the scatterer causes the 
solution inside the object to be poorly determined. Mathematically, the in- 
tegral equations describing the system become ill-conditioned: the solution 
is then strongly dependent on small changes in the incident field, and may 
become completely unreliable. 

We developed a solution method which addresses the encountered diffi- 
culties. In the proposed approach an ill-conditioned high-contrast problem 
is solved in two stages: (1) in the first stage we solve the surface integral 
equation (as in boundary-element methods, although using volumetric ele- 
ments); (2) in the second stage , we solve the volume problem with a modified 
incident field, defined in terms of the original field and the solution of the 
surface problem. Both the surface- and the modified volume problems are 
well conditioned. The procedure is rigorous, it does not involve expansions 
in the ratios of the material parameters, and it does not require altern;u 
ing solving the surface and the volume equations (although each of the two 
problems may be, and usually is - for large systems - solved iteratively). 

The approach is described in detail in [7]. 

3.3 Distributed-memory parallelization of the acoustic integral- 
equation solver 

As we stated above, due to the utilization of the FTT based compression 
scheme, the computational complexity and memory requirements of our 
solver scale approximately linearly with the number of unknowns N. This 



allows for routine solutions of problems up to about 1,000,000 unknowns on 
a single processor system equipped with 4 GB memory. 

However, in order to perform realistic large-scale simulations, involving 
tens of millions of unknowns, development of a parallel distributed-memory 
(MPI) code version which could run on a PC cluster with typical storage of 
about 2 GB memory per processor becomes essential. 

Distributed memory parallelization of an integral equation based solver is 
highly nontrivial, since the nature of the algorithm gives rise a large amount 
erf inter-processor communication. The three main computational stages to 
be considered in the parallelization process are: 

(i) geometry processing and distribution of the geometry data. 

(ii) construction of the stiffness matrix, 

(iii) the iterative solution scheme. 

A scalable parallel implementation of the solver requires that practically 
all geometry data are distributed across processors with a minimal, if any, 
replication. At the same time, during the construction of the stiffness ma- 
trix, processors must have access to some global geometry data in order to 
evaluate near-field couplings between sources and field variables assigned to 
different processors. We solve this problem by partitioning the geometry 
into non-overlapping slices and by assigning them to different processors. 
However, in the matrix construction stage, we temporarily assign several 
adjacent slices (of combined thickness equal at least to the near-field range) 
to each processor and 'Veld" them into a single stack. This welding pro- 
cedure allows us to treat the entire stack of slices as a complete geometry, 
without having to introduce any additional connectivity data relating geom- 
etry elements in adjacent slices (which would have been necessary if slices 
were treated as separate geometries). 

The most essential part of the algorithm is the FFT-based stiffness ma- 
trix compression and the associated fast matrix-vector multiplication pro- 
cedure. The fact that Fourier transforms have to be evaluated in all three 
spatial directions requires a global rearrangement ("transposition") of the 
data and hence a large amount of inter-processor communication. 

For these reasons we build the parallelization scheme of the code around 
the parallel FFT algorithm. We take here advantage of the availability 
of a widely used FFTW package [9], which allows operations on FFT data 
distributed spatially (in the form of "slices") across the processors. Its MPI- 
parallelizod implementation is available in both the current version 3 and 



the previous version 2. We opted for the more recent MPI alpha version 
3.2alpha3 (recently, in November 2008, this version has been replaced by 
3.3alphal). 

However, a literal application of the FFTW routines would have been, in 
our case, inefficient. The equivalent cartesian-grid representation of sources 
and fields, used in our fast compression algorithm, requires zero-padding 
(with the index range extension by the factor of two in each direction) in 
order to eliminate aliasing in the discrete Fourier transformations, the con- 
ventional FFTW routines would locally operate on, and globally exchange, 
zero-filled buffers. Our application of the FFTW package allows a balanced 
distribution of the padding storage across the processors and reduces the 
amount of communication (the latter by avoiding sending and receiving zero 
or irrelevant padding data). Such an efficiency could not have been achieved 
by applying a single global FFT transformation from the package. 

In spite of requiring a large amount of communication, the parallel FFT 
implementation in our solver achieves a nearly perfect scaling with the num- 
ber of processors P (typically, a speedup by a factor about P2/3 instead of 
the ideal speedup ~ P). We tested this behavior for up to several hundred 
processors. 

The parallelization procedure implemented in the present code assumes 
a tetrahedral geometry discretization. However, it is applicable, with only 
minor modifications, to other types of geometry discretization (e.g., to node- 
based basis functions). 

In Section 4 below we present some large scale simulations obtained with 
the parallel solver. We show solutions for a human head model, with and 
without a helmet, and with various materials used as padding in the space 
between the head and the interior helmet surface. The geometry models 
were discretized with approximately 10 million tetrahedra. 

The parallelization procedure is described in detail in the attached draft 
of a manuscript, and will be submitted for publication. 

3.4    Construction of the elasto-acoustic-solver 

Our subsequent research effort focused on the construction of a full elasto- 
acoustic integral equation formulation and on the development of the related 
solver. In our work, we built on our experience acquired in the construction 
of a purely acoustic solver: in particular when overcoming difficulties asso- 
ciated with large contrast cases and strongly sub-wavelength contributions. 

Three candidate versions of the solver were constructed: 



- first order coupled acousto-elastic solver for the 4-dimensional un- 
known vector composed of three components of the displacement field 
u(r) and the pressure field p(r), 

- second order acousto-elastic solver for the 3-dimensional unknown vec- 
tor composed of three components of the displacement field u(r). 

- first order coupled acousto-elastic solver for the 9-dimensional un- 
known vector composed of three components of the displacement field 
u(r) and six (out of total nine) independent components of the stress 
tensor field f(r). 

The above formulations differ in the relative content of either first or sec- 
ond order derivatives of material parameters, and in the treatment of high 
contrast contributions. At this point the choice of the numerically optimal 
formulation poses still an open question and more realistic calculations are 
needed to be carried out to answer it. 

In addition to the listed above three candidate versions of integral equa- 
tions formulations we also constructed a first order coupled acousto-elastic 
solver applicable to geometries composed of piecewise homogeneous regions. 
Such version of the solver involves exclusively unknown values of the traction 
field on interfaces between regions characterized by different Lame param- 
eters A, \i and the material density p. The main reason for devising such a 
method and constructing a surface integral equation solver was: 

- to be able to model highly complex elements of the inner ear with 
surface elements, 

- to quickly assess the importance of mechanisms contributing to energy 
transfer to the cochlea within the framework of a simplified but rel- 
atively realistic geometry model we constructed on a parallel STTR 
effort (we briefly describe the model in Appendix A below), 

- to verify the validity of the purely volumetric integral equation solver 
(in addition to the analytic solution for a multi-layered elastic sphere 
we constructed on a parallel STTR effort). 

As we noted, our choice of the optimal integral equation representation 
to be implemented in the final version of the elasto-acoustic solver remains 
still an open issue. However, we derived numerically expressions for matrix 
elements appearing in ah* of the candidate versions of the elasto-acoustic inte- 
gral equations. In our derivations we used a new method of evaluation of in- 
tegrals of kernel elements involving dipole terms of the Green function. The 



procedure offers both analytical simplicity and numerical accuracy. It does 
not require singularity extraction procedure since it reduces six-dimensional 
volumetric integrals to four-dimensional surface integrals with nonsingular 
integrands. 

The derived expressions are applicable to linear basis functions on tetra- 
hedral and triangular supports. 

The article version of the approach described above is in preparation. 

4    Examples 

Pressure distributions in amultilayer sphere - comparison with the 
analytical solution. As the first example we present comparison of the 
results obtained with our solver with analytical solutions. Figs. 1 and 2 
show results for the pressure distribution in a layered sphere, with the outer 
two shells chosen to represent skin and bone, and the interior of the sphere 
described by mechanical parameters of the brain tissue. The outer radius 
of the sphere is 14 cm, the thickness of the skin layer is 1 cm, and so is the 
thickness of the bone layer. The calculations employed a tetrahedral mesh 
with the tetrahedron sizes of about 2.8 mm; hence the thickness of the shell 
was about three times the tetrahedron size. The total number of tetrahedra 
is about N = 5.5 million. 

Fig. 2 shows distribution of the absolute value of the pressure, |p(r)|, for 
the incident wave of frequency / = 3 kHz). 

.-M 
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Figure 1: Discretization of the layered sphere with TV = 5.5 million tetrahe- 
dra. 



Figure 2: Distribution of the absolute value of pressure, p(r)|, on the plane 
passing through the center of the layered sphere, computed analytically (left) 
and by means of the described acoustic solver (right), for the discretization 
with N = 5.5 million tetrahedra. 

The high quality agreement between the analytical results and code pre- 
dictions for this high-contrast problem provides a support for the accuracy 
of our code. 

Pressure distributions in a human head model in the presence and 
absence of a helmet. The next example involves a realistically shaped 
model of a human head and a model of helmet. 

We assumed a steel helmet and the space between the helmet and the 
head filled either with air or with cork. In this computation we assumed the 
head model tilled with a homogeneous material, with mechanical properties 
of bone. The models are placed in the field of a harmonic acoustic wave 
of frequency 5 kHz, incident laterally on the right ear of the head model. 
The corresponding wavelength in air is A = 6.8 cm. Acoustic parameters of 
materials used in this and similar computations are listed in Table 1. 

Geometries were discretized with tetrahedron sizes (edge lengths) of 
about 3 mm, resulting in (a) N ~ 2,700,000 tetrahedra for the head, and 
(b) N ä 4,700,000 for the head and helmet system. The computations were 
carried out on a Linux cluster with the InfiniBand interconnect network, on 
108 processors for the model (a) and 128 processors for the model (b). The 
total computation times were (a) about 50 minutes and (b) about 2 hours, 
the longer time for the case (b) due mostly to the larger number of iterations 
in the solution. One iteration required 4.6 s in the problem (a) and 6.6 s in 
the problem (b). We estimate that, in both cases, the overall computation 
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time can be reduced by 30 to 50 % by optimizing the matrix construction 
stage of the code. 

Table 1: Acoustic properties of materials used in the simulations 

material p/pO n* 
bone 1777.0 0.1524 
brain 835.4 0.0564 
cork 150.0 0.65 
steel 6667.0 0.0035 

Figure 3: Pressure distribution on the surface of the head in the absence 
of the helmet (left), pressure distribution on the surface of the helmet and 
the head with the space between the head and the helmet filled with air 
(center), pressure distribution on the surface of the head and the helmet 
with the space between the head and the helmet filled with cork (right). 

Fig. 3 shows pressure distribution on the surface of the head in the 
absence of the helmet, as well as pressure distributions on the surface of the 
helmet and the head with the space between the head and the helmet filled 
with air and cork respectively. In all cases we observe a surface wave being 
formed on the geometry exterior. 

In Fig. 4 we show pressure distribution inside the human head model in 
the presence and in the absence of a helmet. 

The results show a nontrivial behavior of the solutions and exhibit phys- 
ical phenomena which may be relevant in the design of protective devices. 

In t he case of the head, Fig. 4(a), the pressure is maximal at the entrance 
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to the ear canal, and it is relatively smoothly distributed inside the head. 
In fact, the solution is suggestive of a resonance-type (P-wave) behavior: 
the pressure changes sign along the approximately vertical line seen in the 
Figure. 

The solution for head and helmet system, Fig. 4(b), is quite different. 
tt exhibits a distinct oscillatory behavior along the surface of the helmet 
and in the region filled by cork. This region appears to have properties of a 
"waveguide1. Because of the cork density being significantly lower than that 
of the surrounding materials (the helmet and the head), and the resulting 
impedance mismatch at the boundaries, the wave tends to be trapped in 
that region. Since the refractive index of cork is not much different from 
that of air, wave oscillations are relatively rapid. We stress, however, that 
the physical picture suggested by Fig. 4(b) would change if we included 
dissipative (attenuation) effects in the filling material, e.g., if we considered 
a strongly damping porous material characterized by a complex refractive 
index. 

We also note that, for the particular frequency considered here, the pres- 
ence of a helmet completely changes the pressure distribution in the head, 
but does not reduce its maximum value (the data in Fig. 4(a) and Fig. 4(b) 
are plotted in different scales). 

Figure 4: Pressure distributions in the coronal plane for (a) the human head 
model and (b) the system consisting of the human head and a steel helmet 
models, with the in-between space filled by cork. The models are subject to 
an acoustic wave of unit pressure amplitude and frequency 5 kHz, incident 
from the left. The maximum pressure value is about 4 in (a) and 15 in (b). 
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5    Appendix A: Test model of a human head 

On a parallel STTR, Phase II effort, we constructed a test model of a human 
head. The model consists of a skin, skull and brain tissue, with the cochlea 
embedded in the skull. In addition, we also constructed a model of a helmet 
and a padding material placed between the head and the interior of the 
helmet surface. The components of the head model are shown in Figs. 5. 
The helmet model is shown in Fig. 6. 

The above elements constitute a minimal yet relevant set of geometry 
components required in carrying out simulations of energy deposited within 
the cochlea region and, subsequently, in the determination of auditory effects 
of the propagating wave. The helmet geometry allows us to investigate the 
Influence of the padding material, as well as of possible air gaps between the 
head and the helmet structure on the energy distribution inside the head 
model. 

Figure 5: The external ear, the cochlea, and the skull models used in the 
simulations. 
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Figure 6:  Model of the external head surface and the helmet.  The arrow 
indicates the direction of the incident wave. 
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